Force-deflection behavior of piezoelectric C-block actuator arrays

نویسندگان

  • Andrew J Moskalik
  • Diann Brei
چکیده

C-blocks are unique piezoelectric building blocks which can be combined in series or parallel to generate tailorable performance and exploit the advantages of bender and stack architectures. This paper presents a complete theoretical model that predicts the force-deflection behavior for any generic C-block actuator array configuration. An experimental investigation with five case studies is described that validates the model over a broad range of actuator prototypes and performance. This study characterizes the sensitivity of this class of actuator array with respect to material, geometric, and configuration parameters. The paper concludes with a comparison of the generic C-block architecture to the current state of art on a basis of absolute measures such as maximum force, deflection, and work and normalized measures such as effective stress, strain, and work per actuator volume. From this, it is concluded that C-blocks are a highly efficient, mid-range actuation technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Polymeric Piezoelectric C-Block Actuator Using Hybrid Optimization Technique

A new class of polymeric piezoelectric bimorph actuators, called C-blocks because of their curved shape, has been developed to overcome limitations of conventional bimorph and stack piezoelectric configurations. Design tradeoffs are investigated in the current research using various performance criteria such as maximum deflection, force, and strain energy. The set of design variables to optimiz...

متن کامل

Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

Self-sensing techniques for atomic force microscope (AFM) cantilevers have several advantageous characteristics compared to the optical beam deflection method. The possibility of down scaling, parallelization of cantilever arrays and the absence of optical interference associated imaging artifacts have led to an increased research interest in these methods. However, for multifrequency AFM, the ...

متن کامل

Vibration Attenuation Timoshenko Beam Based on Optimal Placement Sensors/Actuators PZT Patches with LQR-MOPSO

The main objective of this study is to reduce optimal vibration suppression of Timoshenko beam under non-periodic step and impulse inputs. Cantilever beam was modeled by Timoshenko theory and finite element numerical method. Stiffness (K), mass (M), and damping (C) matrices are extracted. Then, in order to control structure vibration, piezoelectric patches were used due to simultaneous dual beh...

متن کامل

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

Using standard microelectromechanical system (MEMS) processes to coat a microcantilever with a piezoelectric layer results in a versatile transducer with inherent self-sensing capabilities. For applications in multifrequency atomic force microscopy (MF-AFM), we illustrate that a single piezoelectric layer can be simultaneously used for multimode excitation and detection of the cantilever deflec...

متن کامل

Post-buckled precompressed (PBP) elements: a new class of flight control actuators enhancing high-speed autonomous VTOL MAVs

This paper describes a new class of flight control actuators using Post-Buckled Precompressed (PBP) piezoelectric elements. These actuators are designed to produce significantly higher deflection and force levels than conventional piezoelectric actuator elements. Classical laminate plate theory (CLPT) models are shown to work very well in capturing the behavior of the free, unloaded elements. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999